The Non-Commuting, Non-Generating Graph of a Nilpotent Group

نویسندگان

چکیده

For a nilpotent group $G$, let $\Xi(G)$ be the difference between complement of generating graph $G$ and commuting with vertices corresponding to central elements removed. That is, has vertex set $G \setminus Z(G)$, two adjacent if only they do not commute generate $G$. Additionally, $\Xi^+(G)$ subgraph induced by its non-isolated vertices. We show that an edge, then is connected diameter $2$ or $3$, $\Xi(G) = \Xi^+(G)$ in $3$ case. In infinite case, our results apply more generally, any every maximal subgroup normal. When finite, we explore relationship structures detail.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Non-nilpotent Graph of a Group

We associate a graph NG with a group G (called the non-nilpotent graph of G) as follows: take G as the vertex set and two vertices are adjacent if they generate a non-nilpotent subgroup. In this paper we study the graph theoretical properties of NG and its induced subgraph on G\nil(G), where nil(G) = {x ∈ G | 〈x, y〉 is nilpotent for all y ∈ G}. For any finite group G, we prove that NG has eithe...

متن کامل

Non - commuting graph of a group ✩

Let G be a non-abelian group and let Z(G) be the center of G. Associate a graph ΓG (called noncommuting graph of G) with G as follows: Take G\Z(G) as the vertices of ΓG and join two distinct vertices x and y, whenever xy = yx. We want to explore how the graph theoretical properties of ΓG can effect on the group theoretical properties of G. We conjecture that if G and H are two non-abelian finit...

متن کامل

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

characterization of the symmetric group by its non-commuting graph

the non-commuting graph $nabla(g)$ of a non-abelian group $g$ is defined as follows: its vertex set is $g-z(g)$ and two distinct vertices $x$ and $y$ are joined by an edge if and only if the commutator of $x$ and $y$ is not the identity. in this paper we 'll prove that if $g$ is a finite group with $nabla(g)congnabla(bs_{n})$, then $g cong bs_{n}$, where $bs_{n}$ is the symmetric group of degre...

متن کامل

A Kind of Non-commuting Graph of Finite Groups

Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g  and  [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Electronic Journal of Combinatorics

سال: 2021

ISSN: ['1077-8926', '1097-1440']

DOI: https://doi.org/10.37236/9802