The Non-Commuting, Non-Generating Graph of a Nilpotent Group
نویسندگان
چکیده
For a nilpotent group $G$, let $\Xi(G)$ be the difference between complement of generating graph $G$ and commuting with vertices corresponding to central elements removed. That is, has vertex set $G \setminus Z(G)$, two adjacent if only they do not commute generate $G$. Additionally, $\Xi^+(G)$ subgraph induced by its non-isolated vertices. We show that an edge, then is connected diameter $2$ or $3$, $\Xi(G) = \Xi^+(G)$ in $3$ case. In infinite case, our results apply more generally, any every maximal subgroup normal. When finite, we explore relationship structures detail.
منابع مشابه
Non-nilpotent Graph of a Group
We associate a graph NG with a group G (called the non-nilpotent graph of G) as follows: take G as the vertex set and two vertices are adjacent if they generate a non-nilpotent subgroup. In this paper we study the graph theoretical properties of NG and its induced subgraph on G\nil(G), where nil(G) = {x ∈ G | 〈x, y〉 is nilpotent for all y ∈ G}. For any finite group G, we prove that NG has eithe...
متن کاملNon - commuting graph of a group ✩
Let G be a non-abelian group and let Z(G) be the center of G. Associate a graph ΓG (called noncommuting graph of G) with G as follows: Take G\Z(G) as the vertices of ΓG and join two distinct vertices x and y, whenever xy = yx. We want to explore how the graph theoretical properties of ΓG can effect on the group theoretical properties of G. We conjecture that if G and H are two non-abelian finit...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولcharacterization of the symmetric group by its non-commuting graph
the non-commuting graph $nabla(g)$ of a non-abelian group $g$ is defined as follows: its vertex set is $g-z(g)$ and two distinct vertices $x$ and $y$ are joined by an edge if and only if the commutator of $x$ and $y$ is not the identity. in this paper we 'll prove that if $g$ is a finite group with $nabla(g)congnabla(bs_{n})$, then $g cong bs_{n}$, where $bs_{n}$ is the symmetric group of degre...
متن کاملA Kind of Non-commuting Graph of Finite Groups
Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g and [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Electronic Journal of Combinatorics
سال: 2021
ISSN: ['1077-8926', '1097-1440']
DOI: https://doi.org/10.37236/9802